{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "zq-fKBYOUjFR"
},
"source": [
"# 18: Pandas and Timeseries"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "HRXzhqZ8W8p7"
},
"source": [
"## 1. Working with Timeseries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "G7S6rqEQSpPK"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 235
},
"colab_type": "code",
"id": "RcyYsWzIUs63",
"outputId": "6f297ae3-81be-4b1a-aa82-04629441a01c"
},
"outputs": [
{
"data": {
"text/html": [
"
\n", " | Open | \n", "High | \n", "Low | \n", "Close | \n", "Adj Close | \n", "Volume | \n", "
---|---|---|---|---|---|---|
Date | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
2011-10-04 | \n", "3.700 | \n", "3.821 | \n", "3.746 | \n", "3.750 | \n", "3.750 | \n", "1357 | \n", "
2011-10-05 | \n", "3.750 | \n", "3.820 | \n", "3.650 | \n", "3.676 | \n", "3.676 | \n", "3349 | \n", "
2011-10-06 | \n", "3.676 | \n", "3.743 | \n", "3.450 | \n", "3.550 | \n", "3.550 | \n", "6642 | \n", "
2011-10-07 | \n", "3.550 | \n", "3.590 | \n", "2.900 | \n", "3.293 | \n", "3.293 | \n", "7135 | \n", "
2011-10-08 | \n", "3.293 | \n", "3.283 | \n", "2.872 | \n", "2.890 | \n", "2.890 | \n", "2007 | \n", "